Share Email Print

Proceedings Paper

Overview of the range of mechanisms
Author(s): David H. Sliney
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

For more than 35 years, a wide range of biomedical research has been conducted in order to understand the biophysical factors which influence laser induced retinal injury. Although the optical effects which influence retinal imaging and the initial physical events which lead to the absorption and dissipation of the laser energy are well understood, the stages of biological damage which take pace after the deposition of energy are not so well understood. The greatest body of research was initial centered on the interaction of laser energy with ocular tissues. Much of the research was to derive occupational health and safety standards that provide maximum permissible exposure limits. These limits are based both upon the theoretical understanding and the large body of experimental data. Current laser safety research has recently focused almost exclusively on deriving retinal injury thresholds for sub- nanosecond exposures. Setting limits in this temporal region has been difficult, since there have been conflicting data sets and there are limited data to extrapolate to other spectral regions. Because of the transparency of some ocular tissues, the ocular injury studies offer an opportunity to study all interaction mechanism with greater ease of viewing the effects directly with greater clarity than working with other biological tissues.

Paper Details

Date Published: 3 March 2000
PDF: 18 pages
Proc. SPIE 3902, Laser-Induced Damage in Optical Materials: 1999, (3 March 2000); doi: 10.1117/12.379335
Show Author Affiliations
David H. Sliney, U.S. Army Ctr. for Health Promotion and Preventive Medicine (United States)

Published in SPIE Proceedings Vol. 3902:
Laser-Induced Damage in Optical Materials: 1999
Gregory J. Exarhos; Arthur H. Guenther; Mark R. Kozlowski; Keith L. Lewis; M. J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top