Share Email Print

Proceedings Paper

Avalanche multiplication in AlxGa1-xAs/GaAs multilayer structures
Author(s): C. K. Chia; John P. R. David; Graham J. Rees; S. A. Plimmer; R. Grey
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A systematic study has been carried out to understand how avalanche multiplication is modified by heterojunction band- edge discontinuities in AlxGa1-xAs/GaAs PIN diodes. A series of AlxGa1-xAs/GaAs structures have been investigated with well and barrier thicknesses fixed at 500 angstrom while the periods range from one up to twenty-five. Whereas the band-edge discontinuity of these structures has previously been suggested as responsible for producing large ratios of electron to hole ionization coefficients, this investigation shows that a significant ratio is only present in the thinnest 0.1 μm single period devices and that this is due to 'dead-space' effects rather than that of the heterojunction. In fact the multiplication characteristics of all structures are shown to approach those of the average alloy of the device as the number of periods increase, which also strongly suggests that the role of the heterojunction is insignificant. Varying the Al composition had little or no effect on the ionization coefficient ratio. The measured multiplication behavior is interpreted using a simple Monte-Carlo model which shows that the effect of the band-edge discontinuity is negligible because it is offset by different rates of energy relaxation in GaAs and AlxGa1-xAs.

Paper Details

Date Published: 12 November 1999
PDF: 10 pages
Proc. SPIE 3896, Design, Fabrication, and Characterization of Photonic Devices, (12 November 1999); doi: 10.1117/12.370337
Show Author Affiliations
C. K. Chia, Univ. Sains Malaysia (Malaysia)
John P. R. David, Univ. of Sheffield (United Kingdom)
Graham J. Rees, Univ. of Sheffield (United Kingdom)
S. A. Plimmer, Univ. of Sheffield (United Kingdom)
R. Grey, Univ. of Sheffield (United Kingdom)

Published in SPIE Proceedings Vol. 3896:
Design, Fabrication, and Characterization of Photonic Devices
Marek Osinski; Soo-Jin Chua; Shigefusa F. Chichibu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?