Share Email Print

Proceedings Paper

Precision calibration and systematic error reduction in the long trace profiler
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Long Trace Profiler has become the instrument of choice for mirror surface figure test and slope error measurement of synchrotron radiation and x-ray astronomy optics. In order to achieve highly accurate measurements with the LTP, systematic errors need to be reduced by precise angle calibration and accurate focal plane position adjustment. A self-scanning method is presented to adjust the focal plane position of the detector with high precision by use of a pentaprism scanning technique. The focal plane position can be set to better than 0.25 mm for a 1250 mm focal length FT lens using this technique. The use of a 0.03 arc second resolution theodolite coupled with the sensitivity of the LTP detector system can be used to calibrate angular linearity error very precisely. Some suggestions are introduced for reducing the system error. With these precision calibration techniques, accuracy in the measurement of figure and slope error on meter-long mirrors is now at a level of about 1 (mu) rad rms within whole testing range of the LTP.

Paper Details

Date Published: 11 November 1999
PDF: 10 pages
Proc. SPIE 3782, Optical Manufacturing and Testing III, (11 November 1999); doi: 10.1117/12.369239
Show Author Affiliations
Shinan Qian, Brookhaven National Lab. and Sincrotrone Trieste (United States)
Giovanni Sostero, Sincrotrone Trieste (Italy)
Peter Z. Takacs, Brookhaven National Lab. (United States)

Published in SPIE Proceedings Vol. 3782:
Optical Manufacturing and Testing III
H. Philip Stahl, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?