Share Email Print

Proceedings Paper

Inverse halftoning via robust nonlinear filtering
Author(s): Mei-Yin Shen; C.-C. Jay Kuo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A new blind inverse halftoning algorithm based on a nonlinear filtering technique of low computational complexity and low memory requirement is proposed in this research. It is called blind since we do not require the knowledge of the halftone kernel. The proposed scheme performs nonlinear filtering in conjunction with edge enhancement to improve the quality of an inverse halftoned image. Distinct features of the proposed approach include: efficiently smoothing halftone patterns in large homogeneous areas, additional edge enhancement capability to recover the edge quality and an excellent PSNR performance with only local integer operations and a small memory buffer.

Paper Details

Date Published: 18 October 1999
PDF: 11 pages
Proc. SPIE 3808, Applications of Digital Image Processing XXII, (18 October 1999); doi: 10.1117/12.365872
Show Author Affiliations
Mei-Yin Shen, Univ. of Southern California (United States)
C.-C. Jay Kuo, Univ. of Southern California (United States)

Published in SPIE Proceedings Vol. 3808:
Applications of Digital Image Processing XXII
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?