Share Email Print

Proceedings Paper

Prospects for 3D photonic crystals engineered from hydrogenated amorphous silicon
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The prospect of hydrogenated amorphous silicon based photonic thin film material and devices is introduced. The hydrogen content of hydrogenated amorphous silicon controls its refractive index. Hydrogen content and therefore the refractive index patterning techniques and possibilities are described. For example, regions of a growth surface exposed to a hydrogen radical (and/or ion) flux have increased optical band gap and decreased refractive index. By careful implementation of hydrogen control the preparation of 3-D photonic crystal films on a wide variety of substrates including single crystal silicon and flexible polymer becomes possible. The size scales on which it is possible to pattern the hydrogen content are appropriate for the preparation of photonic crystal films and bulk materials designed to interact with the infrared, visible light, or micro-wave electro- magnetic spectrums. The optical band gap of amorphous silicon depends on specific hydrogenated structures. The relatively independent patterning of the band gap and refractive index makes possible an extensive array of optical devices.

Paper Details

Date Published: 20 September 1999
PDF: 12 pages
Proc. SPIE 3801, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, (20 September 1999); doi: 10.1117/12.363940
Show Author Affiliations
Charles M. Fortmann, Tokyo Institute of Technology (United States)
Enrique L. Jaen, SUNY/Stony Brook (United States)

Published in SPIE Proceedings Vol. 3801:
Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V
Francis T. S. Yu; Shizhuo Yin, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?