Share Email Print

Proceedings Paper

Nonlinear attractor dynamics: a new approach to sensor fusion
Author(s): Axel Steinhage
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Fusing information of multiple sensor is particularly difficult if the sensor systems which provide the information have very different characteristics such as different data formats, reliabilities, signal to noise ratios, sampling rates and so on. Furthermore, the information is often provided on different levels of abstraction such as the direct sensor output in contrast to expert knowledge or a priori information. We propose a new approach to sensor fusion which accounts for these problems. The basic idea is to represent the quantity to estimate as the state variable of a nonlinear dynamical system. The sensor signals act on this dynamics by specifying attractors with limited range of influence. The dynamics relaxes into a stable state which results from the superposition of the attractors. By means of the limited attractor ranges, the dynamics automatically averages nonlinearly over corresponding sensor signal while outliers stemming form temporarily de-calibrated or erroneous sensor are discarded. Self-calibration is achieved by representing also the sensor signals as dynamical states and specifying an attractor at the position of the fused estimate. By using the unified attractor representation, abstract information can be treated in the same way as direct sensor input. Furthermore a mathematically well defined and algebraically analyzable format for dynamic sensor information on various levels of abstraction is available. We verify our concept for the example of man-machine interaction: fusing visual and odometric sensor information for the autonomous position estimation with acoustic guidance information for the target acquisition of a mobile robot.

Paper Details

Date Published: 26 August 1999
PDF: 12 pages
Proc. SPIE 3839, Sensor Fusion and Decentralized Control in Robotic Systems II, (26 August 1999); doi: 10.1117/12.360353
Show Author Affiliations
Axel Steinhage, Ruhr-Univ. Bochum (Germany)

Published in SPIE Proceedings Vol. 3839:
Sensor Fusion and Decentralized Control in Robotic Systems II
Gerard T. McKee; Paul S. Schenker, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?