Share Email Print

Proceedings Paper

Soil modification studies for enhanced mine detection with ground-penetrating radar
Author(s): Joel Tidmore Johnson; Jatapum Jenwatanavet; Nan N. Wang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The detection of non-metallic anti-personnel landmines with ground penetrating radar (GPR) is complicated by low dielectric contrasts with the surrounding background medium. Previous studies have shown that the addition of water can improve dielectric contrasts but also increases loss so that target detectability is not necessarily improved. Previous studies have also shown that the addition of liquid nitrogen to wet soils can reduce background medium loss and restore target visibility. In this paper, further waveguide studies of target detection through a controlled depth of nitrogen penetration are reported, and it is shown that scattering from known depth targets can be significantly enhanced if an optimal amount of nitrogen is added. The procedure can also be generalized to unknown depth targets if measurements are taken as gradually increasing amounts of liquid nitrogen are added. Both analytical models and waveguide experiments are presented to illustrate these ideas. Finally, initial test of the soil modification techniques developed through waveguide experiments are reported with a dielectric rod GPR system; results indicate that these methods should be applicable to general GPR sensors.

Paper Details

Date Published: 2 August 1999
PDF: 10 pages
Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, (2 August 1999); doi: 10.1117/12.357095
Show Author Affiliations
Joel Tidmore Johnson, The Ohio State Univ. (United States)
Jatapum Jenwatanavet, The Ohio State Univ. (United States)
Nan N. Wang, The Ohio State Univ. (United States)

Published in SPIE Proceedings Vol. 3710:
Detection and Remediation Technologies for Mines and Minelike Targets IV
Abinash C. Dubey; James F. Harvey; J. Thomas Broach; Regina E. Dugan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?