Share Email Print

Proceedings Paper

Defect reduction methodology in the lithography module
Author(s): Ingrid B. Peterson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

One of the challenges facing the implementation of DUV and advanced in-line lithography processes in production is that of maintaining low defect density in order to minimize the impact on yield. Yield depends on the complex interaction between design, CD and overlay control, films, electrical parameters. As the geometries shrink and the chip size increase, defect reduction becomes increasingly important. Defect density is just as important as critical dimension and overlay metrology in the development and implementation of lithography processes. Achieving and maintaining low- defect density lithography processes necessary for sub- quarter micron technologies requires a defect reduction methodology that quickly detects critical defects, reduces yield-limiting excursions and minimizes cost. This methodology encompasses test and product-wafer inspections combined with a careful selection of the defect inspection tool. Automated Defect Classification cuts the time to results: it facilitates defect source isolation and excursion control enabling an easy implementation of SPC limits by critical defect types. A sampling strategy that balances the cost due to inspection vs. cost due to defect excursions is required.

Paper Details

Date Published: 14 June 1999
PDF: 9 pages
Proc. SPIE 3677, Metrology, Inspection, and Process Control for Microlithography XIII, (14 June 1999); doi: 10.1117/12.350839
Show Author Affiliations
Ingrid B. Peterson, KLA-Tencor Corp. (United States)

Published in SPIE Proceedings Vol. 3677:
Metrology, Inspection, and Process Control for Microlithography XIII
Bhanwar Singh, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?