Share Email Print

Proceedings Paper

Characterizing lens distortion to overlay accuracy by using fine measurement pattern
Author(s): Ronfu Chu; Chungwei Hsu; Tsu-wen Hwang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Previous work has shown that the lens distortion will contribute significantly to overlay error. Since the resolution has gone below 0.18 micrometers with 70 nm overlay tolerance, the lens aberration plays a more important role in the tolerance budget. Originally, the line size of overlay measurement target is about 3 micrometers , which is much larger than the circuit dimensions. Because the smaller pattern is more sensitive to lens distortion, an overlay difference may exist between real devices and the measurement target. In this study, we compared the overlay measurement result of fine pattern and traditional box in box target. With strong lens distortion effect, a fine measurement target may result in an overlay value which is close to the image shift of real circuit. Several types of target design were examined using overlay measuring signal, and the COMA effect was detected by the method of line with measurement. Experiments showed that lens aberration might cause over 15 nm overlay displacement. Because the lens distortion is a random error, software should subtract it while analyzing measurement data. Finally, the difficulties is using a fine target were also discussed and possible solutions were derived to increase the measurement accuracy.

Paper Details

Date Published: 14 June 1999
PDF: 12 pages
Proc. SPIE 3677, Metrology, Inspection, and Process Control for Microlithography XIII, (14 June 1999); doi: 10.1117/12.350790
Show Author Affiliations
Ronfu Chu, Nanya Technology Co., Ltd. (Taiwan)
Chungwei Hsu, Nanya Technology Co., Ltd. (Taiwan)
Tsu-wen Hwang, Nanya Technology Co., Ltd. (Taiwan)

Published in SPIE Proceedings Vol. 3677:
Metrology, Inspection, and Process Control for Microlithography XIII
Bhanwar Singh, Editor(s)

© SPIE. Terms of Use
Back to Top