Share Email Print

Proceedings Paper

Non-chemically amplified 193-nm top surface imaging photoresist development: polymer substituent and polydispersity effects
Author(s): Myoung-Soo Kim; Hyoung-Gi Kim; Hyeong-Soo Kim; Ki-Ho Baik; Donald W. Johnson; George J. Cernigliaro; David W. Minsek
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Thin film imaging processes such as top surface imaging (TSI) are candidates for sub-150 nm lithography using 193 nm lithography. Single component, non-chemically amplified, positive tone TSI photoresists based on phenolic polymers demonstrate good post-etch contrast, resolution, and minimal line edge roughness, in addition to being the most straightforward thin film imaging approach. In this approach, ArF laser exposure results directly in radiation- induced crosslinking of the phenolic polymer, followed by formation of a thin etch mask at the surface of the un- exposed regions by vapor-phase silylation, followed by reactive ion etching of the non-silylated regions. However, single component resists based on poly(para-hydroxystryene) (PHS), such as MicroChem's Nano MX-P7, suffer from slow photospeed as well as low silylation contrast which can cause reproducibility and line-edge-roughness problems. We report that selected aromatic substitution of the poly(para- hydroxystryene) polymer can increase the photospeed by up to a factor of four relative to un-substituted PHS. In this paper we report the synthesis and lithographic evaluations of four experimental TSI photoresists. MX-EX-1, MX-EX-2, MX- EX-3 and MX-EX-4 are non-chemically amplified resists based on aromatic substitutions of chloro- and hydroxymethyl- groups and PHS. We report optimized lithographic processing conditions, line edge roughness, silylation contrast, and compare the results to the parent PHS photoresist.

Paper Details

Date Published: 11 June 1999
PDF: 11 pages
Proc. SPIE 3678, Advances in Resist Technology and Processing XVI, (11 June 1999); doi: 10.1117/12.350277
Show Author Affiliations
Myoung-Soo Kim, Hyundai Electronics Industries Co., Ltd. (South Korea)
Hyoung-Gi Kim, Hyundai Electronics Industries Co., Ltd. (South Korea)
Hyeong-Soo Kim, Hyundai Electronics Industries Co., Ltd. (South Korea)
Ki-Ho Baik, Hyundai Electronics Industries Co., Ltd. (United States)
Donald W. Johnson, MicroChem Corp. (United States)
George J. Cernigliaro, Advanced Nanotechnologies, Inc. (United States)
David W. Minsek, MicroChem Corp. (United States)

Published in SPIE Proceedings Vol. 3678:
Advances in Resist Technology and Processing XVI
Will Conley, Editor(s)

© SPIE. Terms of Use
Back to Top