Share Email Print

Proceedings Paper

Robust control of input-limited smart structural systems
Author(s): Sridhar Sana; Vittal S. Rao
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Integration of controllers with smart structural system require the controllers to consume less power and to be small in hardware size. These requirements pose as limits on the control input and the order of the controllers. Use of reduced order model of the plant in the controller design can cause spill over problems in the closed loop system due to possible excitation of the unmodeled dynamics. In this paper we present the design of output feedback robust controllers for smart structures in the presence of control input limits considering unmodeled dynamics as additive uncertainty in the design. The performance requirements for the design are specified as regional pole placement constraints on the closed loop poles. Formulation of this multi-objective design problem in terms of matrix inequalities resulted in a feasibility problem involving bilinear matrix inequalities (BLMIs) in the unknown variables. To facilitate the solution of this feasibility problem, a change of variables is used to convert these BLMIs into linear matrix inequalities (LMIs) which can be readily solved by the use of available tools. Finally, this design procedure is applied on an experimental smart structure and the results are presented.

Paper Details

Date Published: 4 June 1999
PDF: 12 pages
Proc. SPIE 3667, Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, (4 June 1999); doi: 10.1117/12.350087
Show Author Affiliations
Sridhar Sana, Univ. of Missouri/Rolla (United States)
Vittal S. Rao, Univ. of Missouri/Rolla (United States)

Published in SPIE Proceedings Vol. 3667:
Smart Structures and Materials 1999: Mathematics and Control in Smart Structures
Vasundara V. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top