Share Email Print

Proceedings Paper

Electroviscous effects in microchannels
Author(s): Lawrence Kulinsky; Yuchun Wang; Mauro Ferrari
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Fluid flow in capillary microchannels is used in numerous applications in biotechnology (such as protein separation, fast DNA analysis, drug deliveries systems and viral filtration), in solid-state devices, and in catalytic devices. The current work presents the experimental validation for the electrokinetic theory in microchannels. Retardation of polar liquids, including de-ionized water, ethanol and propyl alcohol, is studied in microfabricated channels of several diameters. It was found that polar liquids flow about 6 percent more slowly than predicted by the classical hydrodynamic theory in microchannels, with the hydraulic diameter equal to 90 microns. For small microchannels with a hydraulic diameter of several microns, observed retardation is on the order of 70 percent. Collected experimental data have good correspondence with the electrokinetic model presented. Electrokinetic retardation of polar liquids in microchannels is based on the charge separation principle. Electrical charges are separated at the interface (near the channel wall). When liquid is forced downstream, it causes charge accumulation at one end of the microchannel. The streaming potential produced causes an upstream current that creates upstream counterflow. The resultant fluid flow is less than it would be for non-polar liquids. The higher the zeta-potential at the microchannel wall and the smaller the channel, the larger the resulting retardation. Modifications for the friction factor, as applied to microfluidics, are suggested. Recommendations to improve fluid flow in microchannels are made.

Paper Details

Date Published: 3 June 1999
PDF: 11 pages
Proc. SPIE 3606, Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications II, (3 June 1999); doi: 10.1117/12.350057
Show Author Affiliations
Lawrence Kulinsky, Univ. of California/Berkeley (United States)
Yuchun Wang, Univ. of California/Berkeley (United States)
Mauro Ferrari, Univ. of California/Berkeley (United States)

Published in SPIE Proceedings Vol. 3606:
Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications II
Mauro Ferrari, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?