Share Email Print

Proceedings Paper

Hard x-ray quantitative noninterferometric phase-contrast imaging
Author(s): Timur E. Gureyev; Carsten Raven; Anatoly A. Snigirev; Irina Snigireva; Stephen W. Wilkins
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We report the results of quantitative hard X-ray phase- contrast microscopy and tomography using synchrotron radiation, in-line imaging geometry and a non-interferometric phase retrieval technique based on the Transport of Intensity equation. This quantitative imaging method is fast, simple, robust, does not require sophisticated X-ray optical elements and can potentially provide submicron spatial resolution over a field of view of the order of centimeters. In the present experiment a spatial resolution of approximately 0.8 micron has been achieved in images of a polystyrene sphere using 19.6 keV X-rays. We demonstrate that appropriate processing of phase-contrast images obtained in the in-line geometry can reveal important new information about the internal structure of weakly absorbing organic samples. We present some preliminary results of a phase-contrast tomographic reconstruction with and without phase retrieval in each X-ray projection. We believe that this method of quantitative X-ray phase-contrast imaging will find applications in biology and medicine, particularly for high-contrast imaging of soft tissues.

Paper Details

Date Published: 28 May 1999
PDF: 9 pages
Proc. SPIE 3659, Medical Imaging 1999: Physics of Medical Imaging, (28 May 1999); doi: 10.1117/12.349510
Show Author Affiliations
Timur E. Gureyev, CSIRO (Australia)
Carsten Raven, European Synchrotron Radiation Facility (France)
Anatoly A. Snigirev, European Synchrotron Radiation Facility (France)
Irina Snigireva, European Synchrotron Radiation Facility (France)
Stephen W. Wilkins, CSIRO (Australia)

Published in SPIE Proceedings Vol. 3659:
Medical Imaging 1999: Physics of Medical Imaging
John M. Boone; James T. Dobbins III, Editor(s)

© SPIE. Terms of Use
Back to Top