Share Email Print

Proceedings Paper

Scatter imaging of injured brain slices: detection of mitochondrial injury
Author(s): Lee J. Johnson; Daniel F. Hanley; Nitish V. Thakor
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Stroke has been shown to cause exitotoxic injury, two of its manifestations being cellular and mitochondrial swelling. In vitro models of stroke attempt to reproduce the effects of stroke by treating brain tissue with excitotoxins or hypotonic solutions. To further resolve the mechanism of stroke injury, we have designed a dual-angle scatter imaging (DASI) system sensitive to particle size. The DASI system has been used with a hippocampal slice preparation to contrast cellular swelling, induced by hypotonicity, and combined cellular and mitochondrial swelling caused by excitotoxicity. We found that both hypotonic end excitotoxic treatments caused changes in light scatter. However, only excitotoxic treatment caused a significant change in DASI.

Paper Details

Date Published: 1 June 1999
PDF: 10 pages
Proc. SPIE 3604, Optical Diagnostics of Living Cells II, (1 June 1999); doi: 10.1117/12.349207
Show Author Affiliations
Lee J. Johnson, Johns Hopkins Univ. School of Medicine (United States)
Daniel F. Hanley, Johns Hopkins Univ. School of Medicine (United States)
Nitish V. Thakor, Johns Hopkins Univ. School of Medicine (United States)

Published in SPIE Proceedings Vol. 3604:
Optical Diagnostics of Living Cells II
Daniel L. Farkas; Robert C. Leif; Bruce J. Tromberg, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?