Share Email Print

Proceedings Paper

Comparison of angular interpolation approaches in few-view tomography using statistical hypothesis testing
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this work we examine the accuracy of four periodic interpolation methods--circular sampling theorem interpolation, zero-padding interpolation, periodic spline interpolation, and linear interpolation with periodic boundary conditions--for the task of interpolating additional projections in a few-view sinogram. We generated 100 different realizations each of two types of numerical phantom--Shepp-Logan and breast--by randomly choosing the parameters that specify their constituent ellipses. Corresponding sinograms of 128 bins X 1024 angles were computed analytically and subsampled to 16, 32, 64, 128, 256, and 512 views. Each subsampled sinogram was interpolated to 1024 views by each of the methods under consideration and the normalized root-mean-square-error (NRMSE) with respect to the true 1024-view sinogram computed. In addition, images were reconstructed from the interpolated sinograms by FBP and the NRMSE with respect to the true phantom computed. The non-parametric signed rank test was then used to assess the statistical significance of the pairwise differences in mean NRMSE among the interpolation methods for the various conditions: phantom family (Shepp-logan or breast), number of measured views (16, 32, 64, 128, 256, or 512), and endpoint (sinogram or image). Periodic spline interpolation was found to be superior to the others in a statistically significant way for virtually every condition.

Paper Details

Date Published: 21 May 1999
PDF: 10 pages
Proc. SPIE 3661, Medical Imaging 1999: Image Processing, (21 May 1999); doi: 10.1117/12.348595
Show Author Affiliations
Patrick J. La Riviere, Univ. of Chicago (United States)
Xiaochuan Pan, Univ. of Chicago (United States)

Published in SPIE Proceedings Vol. 3661:
Medical Imaging 1999: Image Processing
Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?