Share Email Print

Proceedings Paper

High-performance VGA-resolution digital color CMOS imager
Author(s): Suhail Agwani; Steve Domer; Ray Rubacha; Scott Stanley
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be suitable for a variety of color imaging applications including still/full motion imaging, security/surveillance, and teleconferencing/multimedia among other high performance, cost sensitive, low power consumer applications.

Paper Details

Date Published: 27 April 1999
PDF: 11 pages
Proc. SPIE 3649, Sensors, Cameras, and Systems for Scientific/Industrial Applications, (27 April 1999); doi: 10.1117/12.347071
Show Author Affiliations
Suhail Agwani, Motorola (United States)
Steve Domer, Motorola (United States)
Ray Rubacha, Motorola (United States)
Scott Stanley, Motorola (United States)

Published in SPIE Proceedings Vol. 3649:
Sensors, Cameras, and Systems for Scientific/Industrial Applications
Morley M. Blouke; George M. Williams Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?