
Proceedings Paper
Role of stem as a high-resolution failure analysis tool for semiconductor manufacturing technologiesFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
In this paper, we demonstrate the way in which techniques available on a scanning transmission electron microscope (STEM), particularly Z-contrast imaging and energy- dispersive x-ray microanalysis, can be applied successfully in the characterization and failure analysis of super-micron semiconductor manufacturing technologies. Following a general description of the techniques, two separate examples are given: Firstly, the detailed characterization of a low temperature coefficient of resistance SiCCr thin film where a complex microstructure covering a total thickness of approximately 100 angstrom is revealed and described. Secondly, we describe the way in which STEM was used to detect and observe nanometer-sized PtSi spiking in doped epilayers - the root cause of an NMOS sub-threshold leakage issue.
Paper Details
Date Published: 27 April 1999
PDF: 8 pages
Proc. SPIE 3743, In-Line Characterization, Yield Reliability, and Failure Analyses in Microelectronic Manufacturing, (27 April 1999); doi: 10.1117/12.346917
Published in SPIE Proceedings Vol. 3743:
In-Line Characterization, Yield Reliability, and Failure Analyses in Microelectronic Manufacturing
Kostas Amberiadis; Gudrun Kissinger; Katsuya Okumura; Seshu Pabbisetty; Larg H. Weiland, Editor(s)
PDF: 8 pages
Proc. SPIE 3743, In-Line Characterization, Yield Reliability, and Failure Analyses in Microelectronic Manufacturing, (27 April 1999); doi: 10.1117/12.346917
Show Author Affiliations
Alastair McGibbon, National Semiconductor Ltd. (United Kingdom)
Richard Boyle, National Semiconductor Ltd. (United Kingdom)
Richard Boyle, National Semiconductor Ltd. (United Kingdom)
Mark Redford, National Semiconductor Ltd. (Singapore)
Published in SPIE Proceedings Vol. 3743:
In-Line Characterization, Yield Reliability, and Failure Analyses in Microelectronic Manufacturing
Kostas Amberiadis; Gudrun Kissinger; Katsuya Okumura; Seshu Pabbisetty; Larg H. Weiland, Editor(s)
© SPIE. Terms of Use
