Share Email Print

Proceedings Paper

Effect of laser-induced damage on the National Ignition Facility optical design (Abstract Only)
Author(s): Jeffrey A. Paisner
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The National Ignition Facility for Inertial Confinement Fusion (NIF), now under construction at LLNL, will contain a neodymium glass laser system with more than 7000 large optical components capable of irradiating fusion targets with shaped laser pulses of up to 500TW and 1.8 MJ at 351 nm. The laser must operate at the highest feasible fluence to control the cost of the facility, so laser-induced damage and the mitigation of damage are major drivers in the optical design. Cleanliness is essential to reduce damage and obscurations, so optical components for the facility will be transferred from clean assembly areas to the laser bays in sealed clean containers that will insert these optics into the laser without exposing them to contamination from the building environment. 'Ghost' or stray light beams can be a source of damage, and the identification and analysis of both linear and nonlinear ghosts and their interactions with other laser components has been a major part of the optical design effort. Damage and nonlinear effects at 351 nm are much more challenging than at the 1053 nm laser fundamental frequency, and this has had a major effect on the design of the final optics at the target chamber. The vacuum barrier at the target chamber will be at 1053 nm to improve laser performance and increase safety, and the 351-nm components most likely to damage will be easily removable for servicing. The presentation will cover these and other features of the design, and our strategy for procuring these topics with high damage thresholds.

Paper Details

Date Published: 7 April 1999
PDF: 3 pages
Proc. SPIE 3578, Laser-Induced Damage in Optical Materials: 1998, (7 April 1999); doi: 10.1117/12.344426
Show Author Affiliations
Jeffrey A. Paisner, Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 3578:
Laser-Induced Damage in Optical Materials: 1998
Gregory J. Exarhos; Arthur H. Guenther; Mark R. Kozlowski; Keith L. Lewis; M. J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top