Share Email Print

Proceedings Paper

Integrable and differentiable approximations to Planck's equation
Author(s): Gonzalo Paez; Marija Strojnik
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We evaluate the error that arises when approximating the Planck's equation with a truncated series of t terms. We improve the accuracy of the truncated series representation by approximating the resulting error, obtaining integrable and differentiable approximations to the Planck's equation. We obtain the absolute error of less than 0.01 maximum, and relative error of 0.6% with just three terms in the Planck's equation for frequency. Approximately 0.03 absolute error maximum is obtained with only two terms, with 2.4% relative error.

Paper Details

Date Published: 18 November 1998
PDF: 7 pages
Proc. SPIE 3437, Infrared Spaceborne Remote Sensing VI, (18 November 1998); doi: 10.1117/12.331325
Show Author Affiliations
Gonzalo Paez, Ctr. de Investigaciones en Optica (Mexico)
Marija Strojnik, Ctr. de Investigaciones en Optica (United States)

Published in SPIE Proceedings Vol. 3437:
Infrared Spaceborne Remote Sensing VI
Marija Strojnik; Bjorn F. Andresen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?