Share Email Print

Proceedings Paper

High-density photon-gated hole burning in sulfides
Author(s): Levent Biyikli; Michael Solonenko; S. M. Ahmedyan; Zameer U. Hasan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present the case of photoionization-induced persistent spectral holeburning in rare earth doped II-VI compounds for high density memory storage. Experimental data on photon-gated holeburning has been presented for different sulfide hosts (MgS, CaS: RE2+ and RE3+). With the proper choice of the host electronic band structure, the optically active rare earth ion and its electronic transitions involved in the holeburning process, we have observed the highest number of persistent holes ever burned in a single electronic transition. Efficient photon-gated holeburning in the 4f7 (8S7/2) - 4f65d1 transition of Eu2+ is a result of photoionization of Eu2+ to Eu3+. These holes have a width of less than 5 GHz, have no detectable erasing effects after thousands of reading cycles, survive thermal cycling up to the room temperature and have infinite lifetime at low temperature (2 K). Although self- gated holeburning is observed with reading laser at higher powers, the photon budget for reading these holes is so small that thousands of reading cycles can be performed without significantly affecting the optical signal. We discuss the unique features of these systems that make them the most promising candidates to date for the holeburning based optical memories.

Paper Details

Date Published: 5 November 1998
PDF: 8 pages
Proc. SPIE 3468, Advanced Optical Memories and Interfaces to Computer Storage, (5 November 1998); doi: 10.1117/12.330428
Show Author Affiliations
Levent Biyikli, Temple Univ. (United States)
Michael Solonenko, Temple Univ. (United States)
S. M. Ahmedyan, Temple Univ. (United States)
Zameer U. Hasan, Temple Univ. (United States)

Published in SPIE Proceedings Vol. 3468:
Advanced Optical Memories and Interfaces to Computer Storage
Pericles A. Mitkas; Zameer U. Hasan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?