Share Email Print

Proceedings Paper

HgCdTe performance for high operating temperatures
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Sofradir/Lir HgCdTe homojunction IR detector technology has already demonstrated its high maturity level by delivering more than 1000 second and third generation detector dewar assemblies adapted to LWIR and MWIR waveband applications. More recently, Sofradir and Lir started to work on HgCdTe detectors for SWIR applications. One of the main advantage of HgCdTe material is its ability to operate at high temperatures with high performance, and therefore to reduce the cooling constraints (size, cost...) by using small cryocoolers or by using thermoelectric coolers. As a matter of fact, high performance HgCdTe IRFPAs operate at temperatures up to 100 Kelvin for LWIR, up to 130 Kelvin for MWIR and up to more than 200 Kelvin for SWIR. However tradeoffs between performance and operating temperature are possible for many applications and therefore MWIR IRFPA can be proposed at 150 Kelvin or 200 Kelvin for example. This paper presents the advantages of the use of the Sofradir/Lir HgCdTe technology for high operating temperatures, based on the high performance demonstrated, and the several tradeoffs which are possible for various applications. Performance measured on HgCdTe photodiodes are presented, for several combinations of cut-off wavelengths and operating temperatures. The results are compared to potential applications and examples of IRFPA results are given.

Paper Details

Date Published: 26 October 1998
PDF: 12 pages
Proc. SPIE 3436, Infrared Technology and Applications XXIV, (26 October 1998); doi: 10.1117/12.328011
Show Author Affiliations
Alain Manissadjian, SOFRADIR (France)
Patricia Costa, SOFRADIR (France)
Philippe M. Tribolet, SOFRADIR (France)
Gerard L. Destefanis, CEA-LETI (France)

Published in SPIE Proceedings Vol. 3436:
Infrared Technology and Applications XXIV
Bjorn F. Andresen; Marija Strojnik, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?