Share Email Print

Proceedings Paper

Real-time distributed scheduling algorithm for supporting QoS over WDM networks
Author(s): Anthony C. Kam; Kai-Yeung Siu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Most existing or proposed WDM networks employ circuit switching, typically with one session having exclusive use of one entire wavelength. Consequently they are not suitable for data applications involving bursty traffic patterns. The MIT AON Consortium has developed an all-optical LAN/MAN testbed which provides time-slotted WDM service and employs fast-tunable transceivers in each optical terminal. In this paper, we explore extensions of this service to achieve fine-grained statistical multiplexing with different virtual circuits time-sharing the wavelengths in a fair manner. In particular, we develop a real-time distributed protocol for best-effort traffic over this time-slotted WDM service with near-optical fairness and throughput characteristics. As an additional design feature, our protocol supports the allocation of guaranteed bandwidths to selected connections. This feature acts as a first step towards supporting integrated services and quality-of-service guarantees over WDM networks. To achieve high throughput, our approach is based on scheduling transmissions, as opposed to collision- based schemes. Our distributed protocol involves one MAN scheduler and several LAN schedulers (one per LAN) in a master-slave arrangement. Because of propagation delays and limits on control channel capacities, all schedulers are designed to work with partial, delayed traffic information. Our distributed protocol is of the `greedy' type to ensure fast execution in real-time in response to dynamic traffic changes. It employs a hybrid form of rate and credit control for resource allocation. We have performed extensive simulations, which show that our protocol allocates resources (transmitters, receivers, wavelengths) fairly with high throughput, and supports bandwidth guarantees.

Paper Details

Date Published: 7 October 1998
PDF: 13 pages
Proc. SPIE 3531, All-Optical Networking: Architecture, Control, and Management Issues, (7 October 1998); doi: 10.1117/12.327058
Show Author Affiliations
Anthony C. Kam, Massachusetts Institute of Technology (United States)
Kai-Yeung Siu, Massachusetts Institute of Technology (United States)

Published in SPIE Proceedings Vol. 3531:
All-Optical Networking: Architecture, Control, and Management Issues
John M. Senior; Chunming Qiao, Editor(s)

© SPIE. Terms of Use
Back to Top