Share Email Print

Proceedings Paper

Adaptive ISAR focusing of distributed time-varying targets
Author(s): Richard A. Altes
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

As a target moves in the cross-range (azimuth) direction, it rotates relative to a radar. Over a limited observation interval, target points at different azimuths have different range rates that are approximately constant with time. The discrete Fourier transform can be used to construct multi- pulse filters that are matched to the different constant- frequency Doppler components. Maneuvers and other unpredictable effects introduce time varying range rates that defocus the target image on a range-Doppler map. Representations of instantaneous frequency vs. time attempt to reduce blurring by accurate portrayal of time-varying Doppler shifts. An alternative, ideal receiver (correlation) approach to adaptive ISAR focusing is considered here. The predicted delay history of each target point is corrected so as to maintain focus when the corresponding reference function is correlated with echo data. Proposed delay and/or target rotation corrections can be evaluated by comparing test images. For a delay-and-sum synthetic beam former, the nth test image is formed by adding delay-corrected samples of the nth echo to an image that has been sequentially constructed with previous echoes. Image bandwidth can be used as a focus measure for selecting the test image with the best delay/rotation correction. The final image is sequentially constructed from the best test images. The resulting image- based tracker can incorporate a dynamic model as in Kalman filtering and is similar to time warp compensation in speech classifiers.

Paper Details

Date Published: 14 October 1998
PDF: 12 pages
Proc. SPIE 3462, Radar Processing, Technology, and Applications III, (14 October 1998); doi: 10.1117/12.326761
Show Author Affiliations
Richard A. Altes, Chirp Corp. (United States)

Published in SPIE Proceedings Vol. 3462:
Radar Processing, Technology, and Applications III
William J. Miceli, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?