Share Email Print

Proceedings Paper

Fuzzy system for detecting microcalcifications in mammograms
Author(s): Robin N. Strickland; Theodosis Theodosiou
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a fuzzy classifier for detecting microcalcification sin digitized mammograms. The classifier post-processes the output form a wavelets-based multiscale correlation filter. Each local peak in the correlation filter output is represented by a set of five features describing the shape, size and definition of the peak. These features are used in linguistic rules by a fuzzy system that is trained to distinguish between microcalcification sand normal mammogram texture. In borderline cases where microcalcifications are buried in dense tissue or appear only faintly, simply drawing a straight threshold across the feature vector values will likely not produce the correct classification. the fuzzy system allows the effective 'threshold' to be drawn across ranges of features values depending upon how they interact with one another. Compared to wavelet processing alone, the fuzzy detection system produces a significant increase in true positive fraction when tested on a public domain mammogram database.

Paper Details

Date Published: 13 October 1998
PDF: 15 pages
Proc. SPIE 3455, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation, (13 October 1998); doi: 10.1117/12.326728
Show Author Affiliations
Robin N. Strickland, Univ. of Arizona (United States)
Theodosis Theodosiou, Univ. of Arizona (United States)

Published in SPIE Proceedings Vol. 3455:
Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation
Bruno Bosacchi; David B. Fogel; James C. Bezdek, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?