Share Email Print

Proceedings Paper

Second-order statistics-based blind equalization of FIR/IIR multiple-input multiple-output channels with common zeros
Author(s): Jitendra K. Tugnait; Bin Huang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The problem of blind equalization of MIMO communications channels is considered using the second order statistics of the data. Such models arise when a single receiver data from multiple sources is fractionally sampled, or when an antenna array is used with or without fractional sampling. We focus on direct design of finite-length MMSE blind equalizers. We allow infinite impulse response channels. Our approaches also work when the 'subchannel' transfer functions have common zeros so long as the common zeros are minimum-phase zeros. We only require that the there exist a causal, stable left inverse to the MIMO transfer function and that the leading coefficient matrix of the MIMO channel impulse response have its rank equal to the number of sources. The channel length or model orders need not be known. The sources are recovered up to a unitary mixing matrix and are further 'unmixed' using higher- order statistics of the data. An illustrative simulation example is provided.

Paper Details

Date Published: 2 October 1998
PDF: 12 pages
Proc. SPIE 3461, Advanced Signal Processing Algorithms, Architectures, and Implementations VIII, (2 October 1998); doi: 10.1117/12.325699
Show Author Affiliations
Jitendra K. Tugnait, Auburn Univ. (United States)
Bin Huang, Auburn Univ. (United States)

Published in SPIE Proceedings Vol. 3461:
Advanced Signal Processing Algorithms, Architectures, and Implementations VIII
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?