Share Email Print

Proceedings Paper

Modal distribution analysis of vibrato in musical signals
Author(s): Maureen Mellody; Gregory H. Wakefield
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Due to the nonstationary nature of vibrator notes, standard Fourier analysis techniques may not sufficiently characterize the partials of notes undergoing vibrato. Our study employs the modal distribution, a bilinear time-frequency representation, to analyze vibrato signals. Instantaneous frequency and amplitude values for each partial are extracted using Hilbert techniques applied to local neighborhoods of the time-frequency surface. We consider vibrato in violin and vocal performance. Our study confirms the presence of both amplitude modulation and frequency modulation in the partials of notes generated by each of these instruments, and provides a fine-grained analysis of these variations. In addition, we show that these instantaneous amplitude and frequency estimates can be incorporated into methods for synthesizing signals that perceptually resemble the original sampled sounds.

Paper Details

Date Published: 2 October 1998
PDF: 11 pages
Proc. SPIE 3461, Advanced Signal Processing Algorithms, Architectures, and Implementations VIII, (2 October 1998); doi: 10.1117/12.325678
Show Author Affiliations
Maureen Mellody, Univ. of Michigan (United States)
Gregory H. Wakefield, Univ. of Michigan (United States)

Published in SPIE Proceedings Vol. 3461:
Advanced Signal Processing Algorithms, Architectures, and Implementations VIII
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?