Share Email Print

Proceedings Paper

Enhanced detection of objects obscured by dispersive media using tailored random noise waveforms
Author(s): Ram Mohan Narayanan; Joseph A. Henning; Muhammad Dawood
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The University of Nebraska has developed a coherent random noise radar technique that permits phase-coherent processing of random noise radar signals. This is achieved through a heterodyne correlation receiver that retains the phase of the reflected signal during the detection process. A simulation study was carried out to evaluate the system's expected performance during detection of objects buried under lossy dispersive media with different types of complex permittivity characteristics as a function of frequency. It was observed that system performance was degraded under dispersive media conditions. However, by suitably tailoring the random noise transmission characteristics to attain an inverse frequency relationship with respect to the attenuation characteristics of the media, a significant enhancement was observed in detecting obscured objects. This shows that adaptive matched illumination is useful in detecting objects buried under lossy coatings intentionally induced to inhibit detection.

Paper Details

Date Published: 4 September 1998
PDF: 11 pages
Proc. SPIE 3392, Detection and Remediation Technologies for Mines and Minelike Targets III, (4 September 1998); doi: 10.1117/12.324234
Show Author Affiliations
Ram Mohan Narayanan, Univ. of Nebraska/Lincoln (United States)
Joseph A. Henning, Univ. of Nebraska/Lincoln (United States)
Muhammad Dawood, Univ. of Nebraska/Lincoln (United States)

Published in SPIE Proceedings Vol. 3392:
Detection and Remediation Technologies for Mines and Minelike Targets III
Abinash C. Dubey; James F. Harvey; J. Thomas Broach, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?