Share Email Print

Proceedings Paper

ARTMAP-FTR: a neural network for fusion target recognition with application to sonar classification
Author(s): Gail A. Carpenter; William W. Streilein
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include automatic mapping from satellite remote sensing data, machine tool monitoring, medical prediction, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on- line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, Gaussian ARTMAP, and distributed ARTMAP. A new ARTMAP variant, called ARTMAP- FTR (fusion target recognition), has been developed for the problem of multi-ping sonar target classification. The development data set, which lists sonar returns from underwater objects, was provided by the Naval Surface Warfare Center (NSWC) Coastal Systems Station (CSS), Dahlgren Division. The ARTMAP-FTR network has proven to be an effective tool for classifying objects from sonar returns. The system also provides a procedure for solving more general sensor fusion problems.

Paper Details

Date Published: 4 September 1998
PDF: 15 pages
Proc. SPIE 3392, Detection and Remediation Technologies for Mines and Minelike Targets III, (4 September 1998); doi: 10.1117/12.324207
Show Author Affiliations
Gail A. Carpenter, Boston Univ. (United States)
William W. Streilein, Boston Univ. (United States)

Published in SPIE Proceedings Vol. 3392:
Detection and Remediation Technologies for Mines and Minelike Targets III
Abinash C. Dubey; James F. Harvey; J. Thomas Broach, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?