Share Email Print

Proceedings Paper

Shear sensitive silicon piezoresistive tactile sensor prototype
Author(s): Lin Wang; David J. Beebe
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Shear sensing ability it important in many fields such as robotics, rehabilitation, teleoperation and human computer interfaces. A shear sensitive tactile sensor prototype is developed based on the principles of the piezoresistive effect in silicon, and using microfabrication technology. Analogous to the conventional silicon piezoresistive pressure sensor, piezoresistive resistors embedded in a silicon diaphragm are used to sense stress change. An additional mesa is fabricated on the top of the diaphragm and serves to transform an applied force to a stress. Both the shear and normal components of the force are resolved by measuring the resistance changes of the four resistors placed at the corners of a prism mesa. The prototype is tested both statically and dynamically when a spatial force of 0 - 300 gram is applied. Good linearity (R > 0.98) and high repeatability are observed. In this paper, the force sensing mechanism and force determination approach are described. The fabrication process is presented. The preliminary testing results are presented and discussed.

Paper Details

Date Published: 8 September 1998
PDF: 9 pages
Proc. SPIE 3514, Micromachined Devices and Components IV, (8 September 1998); doi: 10.1117/12.323909
Show Author Affiliations
Lin Wang, Univ. of Illinois/Urbana-Champaign (United States)
David J. Beebe, Univ. of Illinois/Urbana-Champaign (United States)

Published in SPIE Proceedings Vol. 3514:
Micromachined Devices and Components IV
Patrick J. French; Kevin H. Chau, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?