Share Email Print

Proceedings Paper

Reversible jump algorithm for analysis of gamma mixtures
Author(s): Petar M. Djuric
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Radiological experiments, designed to study absorbed dose in irradiated microscopic biological tissues, play a central role in microdosimetry. They yield data that cannot directly reveal the distribution of charge per event, but indirectly, through appropriate models, can lead to estimates of desired quantities. In particular, the measurements can be considered as independent random variables whose distribution is a mixture of Gamma densities with unknown but related parameters. The main data processing tasks is to estimate the weights of the components from the experimentally obtained measurements, which are subsequently used for quantifying the physically meaningful distribution of ion pairs per particle crossing the irradiated tissue volume. In the paper, the processing of the mixtures is addressed, and a procedure for estimating all the unknown model parameters proposed. A Bayesian approach to the problem is adopted based on the reversible jump Markov chain Monte Carlo sampling scheme. Samples from the unknown parameters are obtained from their posterior distributions either by Gibbs sampling or by implementing the Metropolis- Hastings scheme. After convergence, the so obtained samples are used to find the estimate of all the unknowns.

Paper Details

Date Published: 22 September 1998
PDF: 9 pages
Proc. SPIE 3459, Bayesian Inference for Inverse Problems, (22 September 1998); doi: 10.1117/12.323805
Show Author Affiliations
Petar M. Djuric, SUNY/Stony Brook (United States)

Published in SPIE Proceedings Vol. 3459:
Bayesian Inference for Inverse Problems
Ali Mohammad-Djafari, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?