Share Email Print

Proceedings Paper

New processing regime for machining of organic materials
Author(s): Stuart Astin; Richard D. Pilkington; Stewart W. Williams; Jagjit Sidhu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper investigates the laser ablation of materials at high intensities. It is known that when drilling organic materials at low and moderate fluences (0.1 - 50 J/cm2) the etch depth per pulse increases exponentially with fluence, essentially following the Beer Law absorption characteristic. For carbon fiber composite the ablation rate reaches a level of about 2 micrometer per pulse for high fluences. However when approaching very high intensities (e.g. greater than 1010 W/cm2) a sharp increase in ablation rate to greater than 30 micrometer per pulse has been observed and used for drilling experiments. Extensive studies of this regime have subsequently been carried out to characterize it. This has included the effect of different focusing lenses and the effect material thickness. For high quality beams the hole quality is good with no heat affected zone and no significant mechanical damage. This new regime may make the large scale excimer laser drilling or cutting of carbon reinforced fiber an economically feasible application due to the increased drilling and cutting rates. Also this method only requires a simple optical system for high beam utilization factors. These issues will be discussed.

Paper Details

Date Published: 14 September 1998
PDF: 7 pages
Proc. SPIE 3343, High-Power Laser Ablation, (14 September 1998); doi: 10.1117/12.321518
Show Author Affiliations
Stuart Astin, Univ. of Salford (United Kingdom)
Richard D. Pilkington, Univ. of Salford (United Kingdom)
Stewart W. Williams, British Aerospace (United Kingdom)
Jagjit Sidhu, British Aerospace (United Kingdom)

Published in SPIE Proceedings Vol. 3343:
High-Power Laser Ablation
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?