Share Email Print

Proceedings Paper

Uncooled radiometric camera performance
Author(s): Bill Meyer; Theodore R. Hoelter
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

Paper Details

Date Published: 22 July 1998
PDF: 10 pages
Proc. SPIE 3379, Infrared Detectors and Focal Plane Arrays V, (22 July 1998); doi: 10.1117/12.317632
Show Author Affiliations
Bill Meyer, Raytheon Systems Co. (United States)
Theodore R. Hoelter, Raytheon Systems Co. (United States)

Published in SPIE Proceedings Vol. 3379:
Infrared Detectors and Focal Plane Arrays V
Eustace L. Dereniak; Robert E. Sampson, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?