Share Email Print

Proceedings Paper

Defects, doping, and interfaces in III-V nitrides
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We describe the use of first-principle calculations to address problems related to defects, doping, and band- structure engineering in III-V nitrides. For n-type doping it is found that nitrogen vacancies are too high in energy to be formed during growth, but silicon and oxygen readily incorporate as donors. The properties of oxygen, including DX-center formation, support it as the main cause of unintentional n-type conductivity. For p-type doping we find that the solubility of Mg is the main factor limiting the hole concentration in GaN. We discuss the beneficial effects of hydrogen during acceptor doping. Compensation of acceptors by nitrogen vacancies may occur, becoming increasingly severe as x increases in AlxGa1-xN alloys. Acceptors other than Mg are also investigated. Finally, we discuss our first-principles investigations of the atomic and electronic structure of heterojunction interfaces between the III-nitrides, and provide values for band lineups.

Paper Details

Date Published: 7 July 1998
PDF: 8 pages
Proc. SPIE 3283, Physics and Simulation of Optoelectronic Devices VI, (7 July 1998); doi: 10.1117/12.316693
Show Author Affiliations
Chris G. Van de Walle, Xerox Palo Alto Research Ctr. (United States)

Published in SPIE Proceedings Vol. 3283:
Physics and Simulation of Optoelectronic Devices VI
Marek Osinski; Peter Blood; Akira Ishibashi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?