Share Email Print

Proceedings Paper

Theory of coherent phonon oscillations in nonpolar and polar semiconductors
Author(s): Aleksey V. Kuznetsov; Christopher J. Stanton
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A microscopic description of coherent phonon oscillations generated by femtosecond optical excitation in both polar and nonpolar semiconductors is presented. For nonpolar semiconductors such as Ge, we show that the coherent lattice displacement is related to a quantum-mechanical average of a single phonon creation operator and we derive the equation of motion for the coherent phonon amplitude. In polar materials such as GaAs there is also another driving force which is more effective, namely, the depolarization electric field created by the separation of electrons and holes in the applied DC field and we formulate a microscopic theory of the plasmon- phonon oscillations. Results show that for an idealized situation with homogeneous plasma density that plasmon-like oscillations dominate the transient behavior. However, once the inhomogeneous density distribution is taken into account, only density-independent LO phonon oscillations are present in the transient optical response.

Paper Details

Date Published: 23 April 1998
PDF: 8 pages
Proc. SPIE 3277, Ultrafast Phenomena in Semiconductors II, (23 April 1998); doi: 10.1117/12.306159
Show Author Affiliations
Aleksey V. Kuznetsov, Univ. of Florida and Ohio State Univ. (United States)
Christopher J. Stanton, Univ. of Florida (United States)

Published in SPIE Proceedings Vol. 3277:
Ultrafast Phenomena in Semiconductors II
Kong-Thon F. Tsen; Harold R. Fetterman, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?