Share Email Print

Proceedings Paper

Implementation and performance of beam smoothing on 10 beams of the Nova laser
Author(s): Deanna Marie Pennington; Sham N. Dixit; Timothy L. Weiland; Robert B. Ehrlich; Joshua E. Rothenberg
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recent simulations and experiments on Nova indicate that some level of smoothing may be required to suppress filamentation in plasmas on the National Ignition Facility, resulting in the addition of 1D smoothing capability to the current baseline design. Control of stimulated Brillouin scattering and filamentation is considered essential to the success of laser fusion because they affect the amount and location of laser energy delivered to the x-ray conversion region (holhraum wall) for indirect drive and to the absorptive region for direct drive. Smoothing by spectral dispersion (SSD), reduces these instabilities by reducing nonuniformities in the focal irradiance when averaged over a finite time interval. We have installed SSD on Nova to produce beam smoothing on all 10 beam lines. A single dispersion grating is located in a position common to all 10 beam lines early in the preamplifier chain. This location limits the 1(omega) bandwidth to 2.2 angstroms with sufficient dispersion to displace the speckle field of each frequency component at the target plane by one half speckle diameter. Several beam lines were modified to allow orientation of the dispersion on each arm relative to the holhraum wall. After conversion to the third harmonic the beam passes through a kinoform phase plate (KPP) designed to produce an elliptical spot at best focus. The KPPs produce a focal spot having an elliptical flat-top envelope with a superimposed speckle pattern. Over 93% of the energy is contained in the central 400 micrometers . Calculations indicate a 16% rms intensity variance will be reached after 330 ps for a single beam.

Paper Details

Date Published: 8 December 1997
PDF: 11 pages
Proc. SPIE 3047, Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, (8 December 1997); doi: 10.1117/12.294250
Show Author Affiliations
Deanna Marie Pennington, Lawrence Livermore National Lab. (United States)
Sham N. Dixit, Lawrence Livermore National Lab. (United States)
Timothy L. Weiland, Lawrence Livermore National Lab. (United States)
Robert B. Ehrlich, Lawrence Livermore National Lab. (United States)
Joshua E. Rothenberg, Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 3047:
Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference
Michel L. Andre, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?