Share Email Print

Proceedings Paper

Fiber optical multi-channel laser radar with parallel processing
Author(s): Christian Baetzel; Johannes K. Schaller; Christo G. Stojanoff
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper deals with frequency modulation radar ranging principles applied to an incoherent multi channel fiber optical laser radar (ladar) system. The amplitude of the power output of a semiconductor laser beam is linearly frequency modulated (chirp). The laser beam is guided into an optical fiber and then splitted in as many channels as needed. The light leaving the fibers illuminates the objects under surveillance. The backscattered light from the objects is coupled back into the fibers, guided to a single photo detector diode and converted to an electrical signal. Mixing this signal with a reference yields a new signal that includes explicitly the distance information in it's frequency components. The basic analysis techniques of this system are derived from estimation theory. Frequency as well as phase of the mixed signal are used to extract distance information. It is shown that the additional information in the phase of the signal lowers the variance of distance measurements.

Paper Details

Date Published: 25 September 1997
PDF: 9 pages
Proc. SPIE 3100, Sensors, Sensor Systems, and Sensor Data Processing, (25 September 1997); doi: 10.1117/12.287764
Show Author Affiliations
Christian Baetzel, Technical Univ. of Aachen (Germany)
Johannes K. Schaller, Technical Univ. of Aachen (Germany)
Christo G. Stojanoff, Technical Univ. of Aachen (Germany)

Published in SPIE Proceedings Vol. 3100:
Sensors, Sensor Systems, and Sensor Data Processing
Otmar Loffeld, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?