Share Email Print

Proceedings Paper

Electrical defect density modeling for different technology nodes, process complexity, and critical areas
Author(s): Tom Winter
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Electrical defect density is simply a model or measurement of the number of electrical defects per unit area, which is a summation of yield loss from several sources, broadly classified into random and systematic failures. Random failure is typically from in-line defects (from equipment, process); systematic failure is from process marginality, parametric failure or design sensitivity. Assuming that after some amount of time systematic issues are mostly worked out, yield is then essentially defect limited, as is the case for most mature fabs/mature products running today. In this scenario, electrical defects density should hold to a predictable pattern dependent on minimum line width, process complexity and layout density (critical area). Understanding these relationships will greatly increase our ability to predict (defect limited) yield for new products at new technologies. The calculation of a critical area parameter, Ac, will be used in place of the area in electrical defect density calculations to obtain a critical area compensated DD that should be independent of device/design structure related effects. In addition, use of the critical area probability of fail curves will be used to estimate yield loss in-line and drive future defect improvements.

Paper Details

Date Published: 2 September 1997
PDF: 7 pages
Proc. SPIE 3215, In-Line Characterization Techniques for Performance and Yield Enhancement in Microelectronic Manufacturing, (2 September 1997);
Show Author Affiliations
Tom Winter, Texas Instruments Inc. (United States)

Published in SPIE Proceedings Vol. 3215:
In-Line Characterization Techniques for Performance and Yield Enhancement in Microelectronic Manufacturing
Damon K. DeBusk; Sergio A. Ajuria, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?