Share Email Print

Proceedings Paper

Micromechanical structures and microelectronics for acceleration sensing
Author(s): Brady R. Davies; Stephen Montague; James H. Smith; Mark Lemkin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

MEMS is an enabling technology that may provide low-cost devices capable of sensing motion in a reliable and accurate manner. This paper describes work in MEMS accelerometer development at Sandia National Laboratories. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. The design and test results of an integrated MEMS high-g accelerometer will be detailed. Additionally a design for a high-g fuse component (low-G or approximately equals 25 G accelerometer) will be discussed in the paper (where 1 G approximately equals 9.81 m/s). In particular, a design team at Sandia was assembled to develop a new micromachined silicon accelerometer which would be capable of surviving and measuring high-g shocks. Such a sensor is designed to be cheaper and more reliable than currently available sensors. A promising design for a suspended plate mass sensor was developed and the details of that design along with test data will be documented in the paper. Future development in this area at Sandia will focus on implementing accelerometers capable of measuring 200 kilo-g accelerations. Accelerometer development at Sandia will also focus on multi-axis acceleration measurement with integrated microelectronics.

Paper Details

Date Published: 5 September 1997
PDF: 8 pages
Proc. SPIE 3223, Micromachining and Microfabrication Process Technology III, (5 September 1997); doi: 10.1117/12.284486
Show Author Affiliations
Brady R. Davies, Sandia National Labs. (United States)
Stephen Montague, Sandia National Labs. (United States)
James H. Smith, Sandia National Labs. (United States)
Mark Lemkin, Sandia National Labs. (United States)

Published in SPIE Proceedings Vol. 3223:
Micromachining and Microfabrication Process Technology III
Shih-Chia Chang; Stella W. Pang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?