Share Email Print

Proceedings Paper

Optical loss mechanisms in nanocomposite sol-gel planar waveguides
Author(s): Rui Manuel Almeida; Paulo J. Morais; H. Cristina Vasconcelos
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Sol-gel SiO2 - TiO2 multilayers (containing 20 mol% TiO2) have been deposited by spin-coating onto single crystal Si substrates previously covered with a SiO2 buffer layer (approximately 4 micrometers), also prepared by sol-gel. The silica-titania films were first densified at 900 degrees Celsius and were then subjected to selected crystallization heat treatments at 1000 degrees Celsius, in order to precipitate different volume fractions of anatase (TiO2) crystallites, between 2.5 and 15%. The optical loss of these nanocomposites was measured at different wavelengths, using argon ion and He-Ne laser light. The experimental loss values, after removing the intrinsic Rayleigh term and surface scattering, were compared to scattering losses calculated by means of the Rayleigh-Mie theory, for light scattering by spherical particles, which was used to examine the influence of different parameters: radiation wavelength, nanocrystallite size and volume fraction of nanocrystals. The theoretical calculations show that, for the wavelengths of interest ((lambda) on the order of or greater than 1 magnitude), nanocrystallite scattering losses remain below 0.5 dB/cm, even for volume fractions as high as 15%, as long as their diameter is below 11 nm. The experimental results agree reasonably well with the theoretical predictions, considering the approximations made. The extension of the model to the study of residual film porosity led to the conclusion that typical porosity present has a negligible influence on the total waveguide loss.

Paper Details

Date Published: 2 October 1997
PDF: 8 pages
Proc. SPIE 3136, Sol-Gel Optics IV, (2 October 1997); doi: 10.1117/12.284127
Show Author Affiliations
Rui Manuel Almeida, Instituto Superior Tecnico (Portugal)
Paulo J. Morais, Instituto Superior Tecnico (Portugal)
H. Cristina Vasconcelos, Instituto Superior Tecnico (Portugal)

Published in SPIE Proceedings Vol. 3136:
Sol-Gel Optics IV
Bruce S. Dunn; John D. Mackenzie; Edward J. A. Pope; Helmut K. Schmidt; Masayuki Yamane, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?