Share Email Print

Proceedings Paper

Comprehensive optical diagnostics of complex flow fields
Author(s): Gregory Toker; Daniel Levin; Alexander Lessin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper describes a series of promising optical diagnostic techniques to provide a comprehensive acquisition of the optical information from various flow fields under investigation. A simultaneous application of the two or even several diagnostic techniques which combines a CFD code calculations yield more accurate measurements of the density and/or the density gradient distributions in complex flow fields. Traditionally qualitative data of the density gradient in a high speed compressible flow have been obtained by schlierengraphy. A white light source and a laser two optical arms schlieren optical schemes were constructed on the base of a conventional schlieren system. The optical image of a model was focused on a photo film and projected on a screen. A CCD- camera was used to catch the focused image in real time, to display it on a control monitor and to record it on a video tape recorder. An acoustically stable holographic variable shear interferometer, which has been easily constructed on the base of the conventional schlieren system allowed to record a signal hologram during the wind tunnel run by using a continuous wave laser light source. Signal and comparison holograms have then been post-processed by the dual hologram technique to display shearing interferograms. A holographic Moire deflectometry method is presented. The holographic recording provides a 'freezing' of the distorted signal wave on a hologram to analyze it a posteriori by the Moire technique. A novel holographic Moire interferometer is described and its application to testing a small size axisymmetric supersonic air jet is shown. An interference method with enhanced sensitivity and compensating for optical aberrations, which is based on rerecording holograms is briefly described. It would provide a reliable acquisition of the phase information from wide range of weak phase objects including high speed low density flow fields. The method has been demonstrated by mapping the density field of the supersonic air jet as a representative weak phase object. The numerical analysis of a 2-D flow field was also carried out by means of computational fluid dynamics (CFD) methods.

Paper Details

Date Published: 22 September 1997
PDF: 11 pages
Proc. SPIE 3110, 10th Meeting on Optical Engineering in Israel, (22 September 1997); doi: 10.1117/12.281400
Show Author Affiliations
Gregory Toker, Technion--Israel Institute of Technology (Israel)
Daniel Levin, Technion--Israel Institute of Technology (Israel)
Alexander Lessin, Technion--Israel Institute of Technology (Israel)

Published in SPIE Proceedings Vol. 3110:
10th Meeting on Optical Engineering in Israel
Itzhak Shladov; Stanley R. Rotman, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?