Share Email Print

Proceedings Paper

Thermoelastic modeling: application to superresolution in photothermal and thermoelastic microscopy
Author(s): Bernard Cretin; N. Daher; Bruno Cavallier
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Photothermal and thermoelastic microscopies are nondestructive methods using optical excitation and detection. In photothermal microscopy, the photoreflectance is used to detect the dynamic component of the surface temperature. In our microscope, the normal component of the thermoelastic displacement is also detected with a laser probe, leading to thermoelastic images. Both methods are used to image surface and subsurface inhomogeneities of the investigated object. A thermoelastic model has been developed to calculate the temperature and the displacement fields in the bulk and at the surface of an isotropic solid. Modeling is applied to the case of limited size optical excitation, corresponding to super-resolution. Theoretical temperature profiles show that the resolution essentially depends on the radius of the excitation beam. Conversely, the thermoelastic displacement provides a lower resolution. Finally, experimental devices are presented.Some images of test samples are shown to place in evidence the different resolutions obtained with thermal and thermoelastic methods in the super-resolution case. An extrapolation of this study should allow to fix the values of the experimental parameters to optimize a microscope using a nanometer sized source.

Paper Details

Date Published: 17 September 1997
PDF: 10 pages
Proc. SPIE 3098, Optical Inspection and Micromeasurements II, (17 September 1997);
Show Author Affiliations
Bernard Cretin, Univ. de Franche-Comte (France)
N. Daher, Univ. de Franche-Comte (France)
Bruno Cavallier, Univ. de Franche-Comte (France)

Published in SPIE Proceedings Vol. 3098:
Optical Inspection and Micromeasurements II
Christophe Gorecki, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?