Share Email Print

Proceedings Paper

Noninvasive near-infrared hemoglobin spectroscopy for in vivo monitoring of tumor oxygenation and response to oxygen modifiers
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The shift in optical absorption of hemoglobin upon binding of oxygen provides a basis for near-infrared monitoring of hemoglobin oxygen saturation, which is an important indicator of tissue oxygenation. Tumor oxygenation has long been studied, because hypoxic cells exhibit resistance to ionizing radiation therapy. The ability to measure noninvasively the oxygenation status of tumors and their response to oxygen modifiers is important in research and clinical settings. We have implemented a steady-state diffuse reflectance method of optical spectroscopy in scattering systems based on the theory of Farrell et al. (Med. Phys., 1992). In scattering phantoms containing erythrocytes, the method recovers the hemoglobin absorption spectrum (650 - 820 nm) and accurately monitors hemoglobin oxygen saturation. We have implemented a probe that individually positions several detection fibers normal to the surface of subcutaneous rodent tumors. Near-infrared absorption spectra reconstructed from diffuse reflectance measurements indicate a hemoglobin oxygen saturation of approximately 50% in R3230AC rat mammary adenocarcinomas when the anesthetized animal breathes room air. Administration of carbogen (95% oxygen, 5% carbon dioxide) via a nose cone produces a rapid and readily detectable increase in the saturation to 75% with no increase in tumor blood volume. Several methods of determining hemoglobin oxygen saturation from absorption spectra obtained by diffuse reflectance spectroscopy are compared, including singular value decomposition, which provides the ability to reconstruct the non-hemoglobin absorbing background without a priori knowledge of its structure or absolute magnitude.

Paper Details

Date Published: 18 August 1997
PDF: 10 pages
Proc. SPIE 2979, Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, (18 August 1997);
Show Author Affiliations
Edward L. Hull, Univ. of Rochester (United States)
Thomas H. Foster, Univ. of Rochester and Univ. of Rochester Medial Ctr. (United States)

Published in SPIE Proceedings Vol. 2979:
Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II
Britton Chance; Robert R. Alfano, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?