Share Email Print

Proceedings Paper

Qualitative and asymptotic properties of curvature-driven silhouette deformations
Author(s): Ilia A. Bogaevski; Alexander G. Belyaev; Tosiyasu L. Kunii
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We consider deformations of a silhouette while its boundary evolves according to a function of the curvature. The functions assumed to satisfy some general conditions of monotonicity and positiveness. For all such deformations we prove the following qualitative properties: convexity preservation, reduction of the number of the curvature extrema, and finite time disappearing. For some curvature- driven deformations we investigate the limiting shapes of the shrinking parts of the silhouette. A discrete polygon evolution scheme is used to demonstrate our theoretical.

Paper Details

Date Published: 20 October 1997
PDF: 10 pages
Proc. SPIE 3168, Vision Geometry VI, (20 October 1997); doi: 10.1117/12.279659
Show Author Affiliations
Ilia A. Bogaevski, Nordon Co. (Russia)
Alexander G. Belyaev, Univ. of Aizu (Japan)
Tosiyasu L. Kunii, Lab. of Digital Art and Technology (Japan)

Published in SPIE Proceedings Vol. 3168:
Vision Geometry VI
Robert A. Melter; Angela Y. Wu; Longin Jan Latecki, Editor(s)

© SPIE. Terms of Use
Back to Top