Share Email Print

Proceedings Paper

Optimization methods aimed at designing a force control active mirror: II. Actuators pattern optimization
Author(s): Xavier Bozec; Jean-Louis Carel; Renaud Mercier Ythier; Pierre Coustal
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the part I of this publication, we have shown that an optimization of the pad allowed us to decrease the actuator number of the active mirror without degrading the performances requirements. The other way to improve performance is presented and discussed in this paper and consists in fitting the pattern of actuators to the set of deformations required in order to decrease the number of actuators. The method we have developed is based on a modal analysis of the mirror. Finite element calculation produces the first dynamic modes of the mirror. Each deformation is decomposed as a linear combination of the dynamic modes. The first step of the optimization is to estimate for a well defined pattern, the best effort vector to perform each mode and to calculate the error associated. The second step is to calculate a overall error taking into account the statistical characteristics of the deformation. The final step consist in the minimization of this error by moving the pattern of actuators. The method of optimization is fully detailed as well as the numerical process used to find the minimum of the error. Many results as well as the advantages of this method are presented. Application of this method to the design of the active mirror of the Laser MegaJoules (French Ignition Program) is mentioned.

Paper Details

Date Published: 17 October 1997
PDF: 12 pages
Proc. SPIE 3126, Adaptive Optics and Applications, (17 October 1997); doi: 10.1117/12.279047
Show Author Affiliations
Xavier Bozec, SFIM Industries (France)
Jean-Louis Carel, SFIM Industries (France)
Renaud Mercier Ythier, SFIM Industries (France)
Pierre Coustal, SFIM Industries (France)

Published in SPIE Proceedings Vol. 3126:
Adaptive Optics and Applications
Robert K. Tyson; Robert Q. Fugate, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?