Share Email Print

Proceedings Paper

Phase-retrieval algorithm for dual-polarization imaging in a ground-penetrating synthetic aperture radar satellite
Author(s): Bobby R. Hunt; Peter T. Gough
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

There are several important remote sensing applications where the development of Ground Penetrating Synthetic Aperture Radar (GPENSAR) is the logical approach, e.g., searching for buried military facilities, minefield mapping, survey of underground pipelines. Penetration of sufficient soil depth for useful results require a SAR to operate at VHF/UHF frequencies, e.g., 200 - 300 MHz. At these frequencies a satellite SAR will encounter substantial distortion in the double passage of the SAR signal through the ionosphere. One of the ionospheric distortions is equivalent the phase aberrations caused in imaging through the turbulent atmosphere, and the problem of phase retrieval for the GPENSAR becomes a necessity. For GPENSR there are imaging concepts that exploit dual polarization radiation of the SAR pulse. The phase retrieval problem then becomes one of compensation for the phase aberrations induced in each of the polarization components returned to the satellite receiver. We discuss the use of the two polarizations to cancel the ionospheric phase aberrations. Unfortunately, the resulting signal has only relative phase of the two polarizations. We discuss an algorithm for the retrieval of the absolute phase. The algorithm is based on an optimization approach. Although phase retrieval by optimization is difficult because of local minima, the retrieval of absolute phase in the dual polarization case is substantially less difficult, because the two polarizations constrain the solution sufficiently to eliminate many local minima.

Paper Details

Date Published: 23 December 1997
PDF: 9 pages
Proc. SPIE 3120, Wideband Interferometric Sensing and Imaging Polarimetry, (23 December 1997); doi: 10.1117/12.278954
Show Author Affiliations
Bobby R. Hunt, Univ. of Arizona (United States)
Peter T. Gough, Univ. of Canterbury (New Zealand)

Published in SPIE Proceedings Vol. 3120:
Wideband Interferometric Sensing and Imaging Polarimetry
Harold Mott; Wolfgang-Martin Boerner, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?