Share Email Print

Proceedings Paper

Calculation of Auger recombination in long-wavelength lasers
Author(s): Mark Silver; Eoin P. O'Reilly; Alfred R. Adams
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The understanding and evaluation of the Auger coefficient, C, and its variation with band structure is essential for accurate device modeling of long wavelength quantum well devices. We have developed a calculation of the Auger coefficient C for both 'band-to-band' processes, which involve strict k-selection rules, and 'k-relaxed' processes, where the strict k-selection rule is relaxed by momentum from phonons. To identify which process is dominating in 1.5 micrometers QW devices we have compared hydrostatic pressure measurements of the lasing threshold current with theoretical predictions for each process. We find that the 'k-relaxing' models are in good agreement with experiment as a function of pressure while the 'band-to-band' processes overestimate the reduction of the non-radiative component of the threshold current with pressure. Based on these results, we predict the threshold current for a number of well characterized 1.5 micrometers QW devices in the literature with a variety of strains and well widths.

Paper Details

Date Published: 6 June 1997
PDF: 12 pages
Proc. SPIE 2994, Physics and Simulation of Optoelectronic Devices V, (6 June 1997); doi: 10.1117/12.275625
Show Author Affiliations
Mark Silver, Univ. of Surrey (United Kingdom)
Eoin P. O'Reilly, Univ. of Surrey (United Kingdom)
Alfred R. Adams, Univ. of Surrey (United Kingdom)

Published in SPIE Proceedings Vol. 2994:
Physics and Simulation of Optoelectronic Devices V
Marek Osinski; Weng W. Chow, Editor(s)

© SPIE. Terms of Use
Back to Top