Share Email Print

Proceedings Paper

Measuring, mapping, and modeling brain structure and function
Author(s): Arthur W. Toga; Paul Thompson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Presently available anatomic atlases provide useful coordinate systems such as the ubiquitous Talairach system but are sorely lacking in both spatial resolution and completeness. An appropriately sampled anatomic specimen can provide the additional detail necessary to accurately localize activation sites as well as provide other structural perspectives such as chemoarchitecture. We collected serial section postmortem anatomic data from several whole human head and brain specimens using a cryosectioning technique. Tissue imaged so that voxel resolution was 200 microns or better at full color. These high resolution datasets along with collections of MR data were placed within a common coordinate system and used to produce a probabilistic representation. This approach represents anatomy within a coordinate system as a probability. Coordinate locations are assigned a confidence limit to describe the likelihood that a given location belongs to an anatomic structure based upon the population of specimens. A variety of warping strategies are discussed to provide statistics on morphometric variability and probability. High dimensional anatomically based warps utilizing sulcal anatomy are described. These data are an important and necessary part of the comprehensive structural and functional analyses that focus on the mapping of the human brain.

Paper Details

Date Published: 9 May 1997
PDF: 11 pages
Proc. SPIE 3033, Medical Imaging 1997: Physiology and Function from Multidimensional Images, (9 May 1997); doi: 10.1117/12.274034
Show Author Affiliations
Arthur W. Toga, UCLA School of Medicine (United States)
Paul Thompson, UCLA School of Medicine (United States)

Published in SPIE Proceedings Vol. 3033:
Medical Imaging 1997: Physiology and Function from Multidimensional Images
Eric A. Hoffman, Editor(s)

© SPIE. Terms of Use
Back to Top