Share Email Print

Proceedings Paper

In-situ investigation of protein and DNA structure using UVRRS
Author(s): L. Shane Greek; H. Georg Schulze; Michael W. Blades; Charles A. Haynes; Robin F. B. Turner
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Ultraviolet resonance Raman spectroscopy (UVRRS) has the potential to become a sensitive, specific, versatile bioanalytical and biophysical technique for routine investigations of proteins, DNA, and their monomeric components, as well as a variety smaller, physiologically important aromatic molecules. The transition of UVRRS from a complex, specialized spectroscopic method to a common laboratory assay depends upon several developments, including a robust sample introduction method permitting routine, in situ analysis in standard laboratory environments. To this end, we recently reported the first fiber-optic probes suitable for deep-UV pulsed laser UVRRS. In this paper, we extend this work by demonstrating the applicability of such probes to studies of biochemical relevance, including investigations of the resonance enhancement of phosphotyrosine, thermal denaturation of RNase T1, and specific and non-specific protein binding. The advantages and disadvantages of the probes are discussed with reference to sample conditions and probe design considerations.

Paper Details

Date Published: 2 May 1997
PDF: 12 pages
Proc. SPIE 2982, Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, (2 May 1997); doi: 10.1117/12.273609
Show Author Affiliations
L. Shane Greek, Univ. of British Columbia (Canada)
H. Georg Schulze, Univ. of British Columbia (Canada)
Michael W. Blades, Univ. of British Columbia (Canada)
Charles A. Haynes, Univ. of British Columbia (Canada)
Robin F. B. Turner, Univ. of British Columbia (Canada)

Published in SPIE Proceedings Vol. 2982:
Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology
Robert C. Leif; Alexander V. Priezzhev; Toshimitsu Asakura; Robert C. Leif, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?