Share Email Print

Proceedings Paper

Holographic interferometric observations of three-dimensional shock-wave reflection from wedges
Author(s): Kazuyoshi Takayama; Toshikatsu Meguro; Osamu Onodera
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper presents an experimental and numerical investigation of 3D shock wave reflections over a corner of two wedges intersecting perpendicularly in a shock tube. Experiments were conducted in a 100 mm X 180 mm diaphragmless shock tube equipped with double-exposure diffuse holographic interferometry in which the time interval between the first and second exposures was set to be 1 microsecond(s) . This arrangement clearly visualized complex configurations of 3D shock wave reflections. A numerical study was also carried out for interpreting these holographic interferometric observations by using the Weighted Average Flux method to solve the 3D unsteady compressible Euler equations. It was found that along the line of the intersection of these two wedges, two Mach stems intersected each other resulting in the formation of a Mach stem which was leaned forward.

Paper Details

Date Published: 28 May 1997
PDF: 10 pages
Proc. SPIE 2869, 22nd International Congress on High-Speed Photography and Photonics, (28 May 1997); doi: 10.1117/12.273438
Show Author Affiliations
Kazuyoshi Takayama, Tohoku Univ. (Japan)
Toshikatsu Meguro, Tohoku Univ. (Japan)
Osamu Onodera, Tohoku Univ. (Japan)

Published in SPIE Proceedings Vol. 2869:
22nd International Congress on High-Speed Photography and Photonics
Dennis L. Paisley; ALan M. Frank, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?