Share Email Print

Proceedings Paper

Detection and orientation classifier for the VIGILANTE image processing system
Author(s): Curtis W. Padgett; Michael F. Zhu; Steven C. Suddarth
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

VIGILANTE is an automated recognition and tracking system that closely integrates a sensing platform with a very large processing capability (over 2 TeraOPS). The architecture currently consists of an optical bench with multiple sensors, a large parallel analog pre-processor, and a digital 512 processor, parallel machine. Preliminary results on target detection and orientation are presented for an algorithm that is suitable for the VIGILANTE architecture. The technique makes use of eigenvectors calculated from image blocks (size 32 X 32) drawn from video sequences containing rocket targets. The eigenvectors are used to reduce the dimensionality of frame-lets (size 32 X 32) from the larger sensor images. These frame-lets are projected on to the eigenvectors and the resultant values are then used as an input pattern to a feed forward neural network classifier. A description and evaluation of this algorithm (including precision limitation) with respect to VIGILANTE is provided. Experiments using this technique have generated near 99target and non-target images and close to 97% identification of the rocket type.

Paper Details

Date Published: 4 April 1997
PDF: 11 pages
Proc. SPIE 3077, Applications and Science of Artificial Neural Networks III, (4 April 1997); doi: 10.1117/12.271479
Show Author Affiliations
Curtis W. Padgett, Jet Propulsion Lab. (United States)
Michael F. Zhu, Jet Propulsion Lab. (United States)
Steven C. Suddarth, Dept. of Defense (United States)

Published in SPIE Proceedings Vol. 3077:
Applications and Science of Artificial Neural Networks III
Steven K. Rogers, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?